ATP regulation of type-1 inositol 1,4,5-trisphosphate receptor activity does not require walker A-type ATP-binding motifs.
نویسندگان
چکیده
ATP is known to increase the activity of the type-1 inositol 1,4,5-trisphosphate receptor (InsP3R1). This effect is attributed to the binding of ATP to glycine rich Walker A-type motifs present in the regulatory domain of the receptor. Only two such motifs are present in neuronal S2+ splice variant of InsP3R1 and are designated the ATPA and ATPB sites. The ATPA site is unique to InsP3R1, and the ATPB site is conserved among all three InsP3R isoforms. Despite the fact that both the ATPA and ATPB sites are known to bind ATP, the relative contribution of these two sites to the enhancing effects of ATP on InsP3R1 function is not known. We report here a mutational analysis of the ATPA and ATPB sites and conclude neither of these sites is required for ATP modulation of InsP3R1. ATP augmented InsP3-induced Ca2+ release from permeabilized cells expressing wild type and ATP-binding site-deficient InsP3R1. Similarly, ATP increased the single channel open probability of the mutated InsP3R1 to the same extent as wild type. ATP likely exerts its effects on InsP3R1 channel function via a novel and as yet unidentified mechanism.
منابع مشابه
Plasma and intracellular membrane inositol 1,4,5-trisphosphate receptors mediate the Ca increase associated with the ATP-induced increase in ciliary beat frequency
Barrera, Nelson P., Bernardo Morales, and Manuel Villalón. Plasma and intracellular membrane inositol 1,4,5-trisphosphate receptors mediate the Ca increase associated with the ATP-induced increase in ciliary beat frequency. Am J Physiol Cell Physiol 287: C1114–C1124, 2004. First published June 2, 2004; 10.1152/ajpcell. 00343.2003.—An increase in intracellular free Ca concentration ([Ca ]i) has ...
متن کاملAtp Regulation of Recombinant Type 3 Inositol 1,4,5-Trisphosphate Receptor Gating
A family of inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) Ca2+ release channels plays a central role in Ca2+ signaling in most cells, but functional correlates of isoform diversity are unclear. Patch-clamp electrophysiology of endogenous type 1 (X-InsP3R-1) and recombinant rat type 3 InsP3R (r-InsP3R-3) channels in the outer membrane of isolated Xenopus oocyte nuclei indicated that enh...
متن کاملATP binding to a unique site in the type-1 S2- inositol 1,4,5-trisphosphate receptor defines susceptibility to phosphorylation by protein kinase A.
The subtype- and splice variant-specific modulation of inositol 1,4,5-trisphosphate receptors (InsP3R) by interaction with cellular factors plays a fundamental role in defining the characteristics of Ca2+ release in individual cell types. In this study, we investigate the binding properties and functional consequences of the expression of a putative nucleotide binding fold (referred to as the A...
متن کاملPlasma and intracellular membrane inositol 1,4,5-trisphosphate receptors mediate the Ca(2+) increase associated with the ATP-induced increase in ciliary beat frequency.
An increase in intracellular free Ca(2+) concentration ([Ca(2+)](i)) has been shown to be involved in the increase in ciliary beat frequency (CBF) in response to ATP; however, the signaling pathways associated with inositol 1,4,5-trisphosphate (IP(3)) receptor-dependent Ca(2+) mobilization remain unresolved. Using radioimmunoassay techniques, we have demonstrated the appearance of two IP(3) pea...
متن کاملRegulation of Inositol 1,4,5-Trisphosphate Receptors by cAMP Independent of cAMP-dependent Protein Kinase*
In HEK cells stably expressing type 1 receptors for parathyroid hormone (PTH), PTH causes a sensitization of inositol 1,4,5-trisphosphate receptors (IP(3)R) to IP(3) that is entirely mediated by cAMP and requires cAMP to pass directly from type 6 adenylyl cyclase (AC6) to IP(3)R2. Using DT40 cells expressing single subtypes of mammalian IP(3)R, we demonstrate that high concentrations of cAMP si...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 284 24 شماره
صفحات -
تاریخ انتشار 2009